Qe Pl ser ")7'7[

BOOT STRAP

CLIP 13 Ego~ TOf

Sy

Tadd ke,
[2 Suﬁg{kgflic, Dy
Lciiiotﬁakl/ﬁf/ On

M2H 3173
APPLI-CARD OEM MANUAL

The Personal Computer Products, Imc. (PCPI) APPLI-CARD
and all softvare and documentation in the entire APPLI-
CARD package except the CP/M operating system aTe
copyrighted under the copyright laws of the United
States by Personal Computer Products, Incorporated.
The CP/M operating system and associated CP/M system
documentation are copyrighted under the United States
Copyright laws by Digital Research, Inc.

No part of this publication may be reproduced, stored
in & retrieval system, transmitted in any form or by
any means,electronic, mechanical, photocopying,
recording, or otherwise, without the vritten consent of
PCPI.

The unathorized duplication of these materials
constitutes copyright infringement, and will subject
the infringer to civil and possible criminal penalties
under the copyright laws of the United States.

PCPI makes no representations or wvarranties with
respect to the contents of this material. PCPI
specifically disclaims any implied varranties or
merchantability of fitness for a particular purpose.
Furthermore, PCPI reserves the right to revise or
change this publication and to make changes from time
to time in its content without any obligatiom to motify
any person or organization of said revision(s) and/or
change(s).

Programmers or OEMs requiring revision information
should contact PCPI at the address belowv.

Personal Computer Preoducts, Imnc.
16776 Bernardo Center Driwe
San Diego, CA 92128

APPLI-CARD'® is a trademark of Personal Computer

Products, Inc.

APPIC(R)il a registered trademark of Apple Computer Co.

CP/H(R) is a registered trademark of Digital Research,
Inc . N

i

APPLI-CARD CGEM MANUAL

1.

3.
4.

TABLE OF CONTENTS

COPYRIGET AND TRADEMARK INFORMATION...ceeeeecooseei
TABLE OF CONTENTS.ceeseocccsccscssosenscsossosensid
IKTRODUCTORY ROTE..cceeeccccccsascaossassassssssiid
R10E FHPORMATION. . 1000 AR08 08a 304 acccannsssl

APPLE 1/0 PROCESSOR COMMAND STRUCTURE. .ccoeccccassl
INTRODUCTION.............................2
GERERAL COMMANDS e cceccoccoccacccsansssssssd
DEVICE COMMANDS e cececcccccccocascascassesd
BLOCK DEVICE COMMANDS .ceccocssaccccscsscshd
CHARACTER DEVICE COMMANDS...ccococecosccesd
COMMAND MAP....ccccevscccnccccscssssonssl2

I/o nYIz..&,........O......‘00.............0.0"013

ELRDVARE...16
APPLE BARDWABRE .o veeccccccsscssccssassessld
APPLI-CARD BARDWARE...coceecoescscvccccessld
APPLI-CARD FIRMWARE..c.eocoscccscsssssesl?

DEBUGGI-NG DxIvtxs..O...‘.......Q.‘..Q.....‘o0000-19
IRIRODUCIION.......oo......o.....-o0000019
x!stt -PAT‘CB.......'....00.‘.‘.....'...'.'20

Assanzk...I...""...'..-‘..0.........4‘-’0.'...Izl
IRTRODUCTIOR . . ceeeccccaansacscssavensssasll
USER INTERFACE ...c.ceeccascsssnsvonessss2l
SOURCE SYNTAXceoeovaasssseccosesossnesss22
unus".‘........"‘.'.......Q..-"...O..22
OB CODER I £ 857 s sive donhBaB sBBB e oo e ssnedl
OPEZRAND. oo ossrvsconscsobibrishtBossesesssesdd
NUMERIC CONSTARTS cvevcecccceccaanooanness23
PSEUDO DPERATIOR.ecceccoccccosccssnsosssld
BUGS IN TEE ASSEMBLER.eceeeessscssecssss26

LIﬂxxa"..'......-...-“.‘....’D..‘.‘O‘...‘.‘...‘."»"2-7

nszn INT“FACB.....-.......o.o..cc.oooa027
3ch u Inz LINKER‘.O.....0004-0‘00.0‘00029

czxur.oa.o.tal'0'.OOO"".O..’...Q.-‘.J..OOOGOOOOBO

nszn mzRFACIO.0‘..‘..‘00.0..‘00...4.40030
Bncs Ix THE GENM?............'.........30

on!x ?nzs‘....‘....‘......'.’..l....‘..........31

1

INETRODUCTORY HOTE

Throughout this manual, references are made to various
files (such as RDWRHST.ASM). These files may be found
on the supplied diskette (Chapter 9 contains a list of
. them). This manusl is designed to be used in
conjunction with these annotated source files. It is
suggested that the reader first list these files and
refer to them as necessary when reading this manual.
Assembled 1ist files of Apple resident programs (as
opposed to primtouts of the source files) may be
obtained via the supplied 6502 cross assenbler (see
Chapter 6). The APPLI-CARD resident programs Day be

assembled with the standard CP/M assembler (AS¥ or
MAC).

|
[24
He

CHAPTER 1/ BIOS IEFORHATIOHN

CP/M consists of 3 sections:

. Console Command Processor(CCP)
. Basic Disk Operating System (BDOS)
. Basic Input Output System (s108)

Of these modules, only the BIOS is hardvare dependent.
The APPLI-CARD BIOS uses the Apple computer as its I1/0

_processor and sends commands over & communication port
to direct the Apple.

The BIOS is hardwvare dependent code vritten in assembly
language. This code translates calls, by both the BDOS
and from sapplication programs, toO commands for use by
the Apple. When it is mnecessarTy that a program
communicate with the Apple, subroutines in the
RDWREST.ASM file may be used. The Apple and APPLI-CARD
communicate over a parallel port. This allows both the’
APPLI-CARD 2pnd the Apple to Tun at the same time and
pot intrude upon each others address space. This also
allowe the APPLI-CARD BIOS to be relatively smsall,
becsuse the direct manipulation of the 1/0 devices is
done in the Apple.

The BIOS has been arranged to support up to 16 mases
storage devices as vell eas 16 character devices. The
mess storage devices may be of multiple densities.
These are referenced a8 drives A: through P:. With the
unsee o0f tbhe INSTALL progrzam, these devices are
. sutomatically alloczted check vector space, sllocation
vector space, and host buffers. The user must ensure
that the driver is in the proper format. Thie format
is detailed in the BDEXMPL.A65 file. The character
devices may be accessed by chacging the I/0 byte to use
the first five devices; the remaining 11 devices must
be eaccessed directly from the application code by using
the BRDWREST.ASHM file. An example character device
driver is CDEXMPL.A65. Please refer to it for details
on how to write a cheracter device driver.

APPLI-CALD OEM MAKUAL /PAGE 1

CEAPTER 2/ APPLE 1I/0 PROCESSOR COMMAED STRUCTURE

2.1 INTRODUCTION

2.2 GENERAL
COMMAKRDS

As mentioned previously, the Apple and the APPLI-CARD
communicate over a parallel port. The APPLI-CARD scnds
commands to the Apple and the Apple performs the
commands, then waits for the next commeand. There are
256 possible commands which the APPLI-CARD may send to
the Apple. They are divided into 2 Classes:

. 0 through 127 (generazl commands)
. 128 through 255 (device specific
commands)

Each command is followed by parameters with the number
of parameters being dependenmt omn the command. The
parameters are simply sent folloving the command byte.
For example, the read data command (1) requires the
starting address and the number of bytes as parameters.

The following assembly language program segnoent
demonstrates this (the subroutines used are io the
RDWRHST.ASM £ile):

1D c,1 ;C = READ DATA COMMANKD

CALL WHEBYTE ;s ANXD SEND 1T

LD DE,1000RH ;DE = STARTING ADDRESS

CALL WEWORD 3 AND SEND IT

LD DE,123EH ;DE = NUMBER OF BYTES
T0 RECEIVE

CALL WEWORD s AND SEND IT

LD HL,200H ;BL = LOCATION TO STORE

LD DE,]123H sDE = NUMBER OF BYTES

CALL REBYTS + GO READ THEX

Subroutines WHBYTE, WEWORD, and REBYTS are described
fully iz the RDWRHST.ASH file. Briefly, WEBYTE
revrites ome byte from the APPLI-CARD to the Host
processor (the Apple). WEWORD writes two bytes from
the host, and REBYTS reads multiple bytes froa the
host.

Currently, 8 of the 128 possible general commands are
supported. These are the first 8 commands (0 through
7). The next 8 (9 through 15) are reserved for tbhe

system and must not be used. The remaining conmands
are undefined.

APPLI-CARD OEM MAHRUAL /PAGX 2

\

The following is a description of the 8 general
commands:

Yotes:

.« All 2 byte parameters are sent low byte
folloved by high byte.

. Parameters are listed in the order sent
to the Apple.

COMHEALLD QRSCRIPTIDH
0 Function:

Illegal command (does nothing).
Parameters:
None.
Results:

None.

1 Function:
Read data fron the Apple memoTy.
Comments:
This command reads data from the Apple
memory and returns it to the APPLI-
CARD.
" Parameters:
Starting address (2 bytes).
Number of bytes (2 bytes).
Results:
Returns the requested number of bytes to
the APPLI-CARD.

2 Punpttion:
Write data to the Apple memoOTy.
Conwments:
Yhis comcand writes data to the Apple
memoOTy-.
Parsmeters:
Startipg address (2 bytes).
Wunber of bytes (2 dytes).
Data (The number of bytes is the value
passed above)
Results:
XNone.

3 Funtction:
Execute a Toutine.
Conments:
Yhis command causes the Apple to send s
vyoutine at the address passed. The
Youtine must end with a RET.
Paramelers:
Starting address (2 bytes).
Results:
Nowme.

APPLI-CARD OEM MANUAL /PAGE 3

COMHAND

4

DESCRIPTIOH

Function:
Warm boot operating system.
Comments:

This routine is used by the wvarm boot
code. It should not be used by
other programs.

Parameters:

None.

Results:

The operating system is sent to the

APPLI-CARD.

Function:
Connect a device driver.
Comments:
This is used by DLDRVR and at boot
time by DRIVERS. Device drivers are
6502 programs that exist in CP/M
files in a relocatable format. They
are read into the APPLI-CARD memory
via the normal CP/M commands and
then are sent to the Apple wvhere
they are included in the executing
goftvare. General command 5 is used
to dovnload these drivers from
APPLI-CARD memo to Apple memoTYy.
Also refer to the example drivers on
the structure of a driver. See
DLDRVR.ASM for details.
Parameters:
Load address (2 bytes, 0 = relocatable).
Length of driver (2 bytes).
Length of Page 0 (1 byte).
Tag field (1 byte, curremtly 0).
Device number (2 bytes (upper byte is

Rumber of devices (2 bytes (upper byte
is 0)).

Address of initialize entry poimt (2
bytes).

Address of read entry point (2 bytes).
Address of write emtry points (2 bytes).
Address of other entry point (2 bytes).
Address of polling emtry point (2 bytes)
Driver code (As indicated by length of
driver).
Relocation bit map (Nome if load address
is 0, else is length of driver/8).
Page 0 relocatiom bit map, (Kone if
length of page 0 is 0 else is length
of driver/8).

APPLI-CARD OEM MABUAL /PAGE 4

DEVITCE
COMMANDS

COKNAND DRSCRIPTION

6 Function:
Read 1 byte from the Apple memory.
Comments:
This routine reads a byte of data using
6502 direct addressing, instead of
6502 indirect addressing used in
commands 1 and 2.
Parameters:
Address to read (2 bytes)
Results:
Returns one byte of data.

7 Function:
Write 1 byte of data to the Apple
memoTry.

Comnments:
This routine writes a byte of data using
6502 direct addressing, instead oX
6502 indirect addressing wused in
commandéds 1 and 2.
Parameters:
Address to write (2 bytes).
Data to write (1 byte).
Results:
Kone.

8 through Reserved for system use.

15

16 through ' Undefined.

127

The 128 device commands allowv direct control of 32
devices, which are defined in the Apple. The 32 devices
are divided into two groups. Sixteen block devices aTe
used to control mass storage devices (such as floppy
disks), and 16 character devices (such as the console
and printers). Each device has four commands:
INITIALIZE, READ, WRITE, and OTEER. OTEER is used to
define 256 more commands. The first 16 of these aTe
reserved; the remzining 240 are available for use.

APPLI-CARD OEX MANUAL /PAGE S

~— The following describes the way the device command
bytes are encoded:

Bits O and 1: Defines which of the four commands toO
use with the device.)

0 = INITIALIZE
1 = READ

2 = WRITE

3 = OTHER

Bits 2 through 5: Define which of the 16 devices to
use.

0 = Device O
1l = Device 1

15 = Device 15
Bit 6: Defines either Block or Character mode.

0 = Block mode
1 = Character mode

Bit7: Defines General or Device command.
0 = Generel command

] = Device command

2.3.1 BLOCK Thissection describes how thefour commands are

DEVICE interpreted for block devices. See BDEXMPL.A65 for an
COMMANDS example of a block device driver.
COHMAED DESCRIPTION

INITIALIZE Function:
Initailize the driver.
Comments:

This command causes a call to the
INITIALIZE entry point 1im the
appropriate driver by the Apple
processor. It is automaticsally
called wvhen the driver is connected
(General command 5).

Parameters:
None.
Results:
Error code (1 bytes; if no errors then

e;to: code = 0, else error code <>
0).

APPLI-CARD OEM MAHUAL /PAGE 6

COMNARD

READ

WRITE

OTEER

DESCRIPTION

Function:
Read one sector of data.
Comments:

This command causes a call to the READ
entry point in the apprppriate
drivers by the Apple processor.

Parameters:

Sector size (2 bytes).

Drive number (1 byte).

Track number (2 bytes).

Sector number (2 bytes).

Results:

Sector data (sector size bytes).

Error code (1 byte, If no errors
then error code = 0, else error code
<> 0).

Function:
Write one sector of data.
Comments: =
This commands cesuses & call to the WRITZ
entry point in the a&approprieste
driver by tbe Apple processor.
Parameters:
Sector size (2 bytes).
Drive number (1 byte).
Track number (2 bdytes).
Sector number (2 bytes).
Sector data (sector size bytes).
Results: -
Error code (1 byte, If no errors then
error code = 0, else error code <> 0).

Defipes 256 other commands to a block
device. The first 16 are reserved.

Function:
Send disk parameter command.
Comments:

This commznd is mused dy the BIOS to
support multiple density disks. Each
time 2 disk ie used for the first
time, this command is sent to log in
the drive. The driver then
determines the type of disk a=nd
sends up the appropriste disk
parameters. These tables are usually
created 2t 22senmbly time. The data
is determined by using the file
DISKDATA.ASY file supplied on the
disk.

APPLI-CAERD OEH MAEUAL /PAGE 7

CONHAED

2 through
14 g

15

DESCRIPTION

Parameters:
Kone.
Results:

Sector size (2 bytes).

CP/M records per track (2 bytes).

CP/M records per host block (1 byte).

CP/M records per allocation block (1
byte).

Sector mask (1 byte).

Sector shift count (1 byte).

CP/M records per track (2 bytes).

Block shift factor (1 byte).

Block shift mask (1 byte).

Pisk size - 1 in allocation blocks (2
bytes).

Directory size - 1 (2 bytes).

Allocation mask (2 bytes).

Check size (2 bytes).

Offset to first CP/M directory track £
bytes).

Translation table (2 bytes should be 0).

Error code (1 byte if no errors theon
egror code = 0, else error code <7
0).

Function:
Format command.
Comzments:
Formats the entire block device.
Parameters:
Drive number (1 byte).
Results: g
Error code (1 byte, if no errors thev

error code = 0, else error code <2
0).

Reserved.

Fuzction:
Send name of driver.
Comments:
This command is used to get the name of
the driver. Since this command was
added after the initial release of the
softvare, not all drivers support this
command. If you wish to use the GETNAME
subrouvtine, refer to RDWREST.ASHM.
Parameters: . :
Kone.

APPLI-CARD OEM MANUAL /PAGE 8

CHARACTER
DEVICE
COMMANDS

e s o S

CONHATRD DESCRIPTION i

Results: .
Length of name (1 byte max value of 15).
Name characters (byte length of name).
Error code (1 byte of 0).

This section describes howthe four commands 8re
interpreted for character devices. ‘See CDEXMPL.A65 for
an example of a character device driver.

COMMAND DESCRIPTION

INITIALIZE Function:
¥ Initialize the driver.
Comments:
This command causes a call to the
INITIALIZE entry poinmt of the
appropriate driver by the Apple
processoT. It is eautomatically
called when the driver is conmnected.
Parameters:
None.
Results:
0 = Ro errors , else . erTOX in
initialization. -

READ Function:
Read & byte.
Conmments:

This command causes a call to the READ
entry point of the sppropriate
driver by the Apple processorT.

Parametexrs: g

None.

Results:
Character resd (1 dbyte).

WRITE Function:
Write a byte.
Conments:
This command csuses a call to the WRITE
entry point of the appropriate

driver by the Apple processor.
Parameters:

Character to write (1 byre)d.
Results:
None.

APPLI-CARD OEM MAEUAL /PAGE 9

B -

COMMAND

OTEHER

DESCRIFTIOR

256 other commands to a character device
may be used.

Function:
Output status. Returns the status of the
character output routine.
Parameters: 4
None.
Results:
Status code (1 byte, if resdy to send
then status code <> 0, else status
code = 0).
Function:
Input status. Returns the status of the
character input routine.
Parameters:
Kone.
Results:
Status code (1 byte, if character is
ready then status code <> 0, else
status code = 0).

Function:

Turns on the video for this device.
Comments:

This is used for switching from the

Apple video to the comsole video.

Parameters:

None.
Result:

Status code (1 byte, ignore).

Function:
Turn on the Apple video.
Conments:
This used used for swvitching from the
tonsole video to the Apple wvideo.
Parameters:
KRone.
Results: ' :
Status code (1 byte, ignore).

Function:
Returnthe wvidth of this device.
Comments:
This is used to determine the display
width of a device.
Parameters:
None.
Results: X
Return the width of the this device (1

APPLI-CARD OEM MAEUAL /PAGE 10

COEMARD

5 through
14

15

DESCEIPTIOR

Reserved

Function:
Send name o0t driver.
Comments:

This command is used to get the name of
the driver. Since this command wvas
added after the initial release of
the software, mnot all drivers
support this comwmand. To use this
function, use the GETNAME subroutine
in RDWRBST.ASHM.

"Parameters:

None.
Results:
Length of nzme (1 byte max of 15).
Reme characters (byte length of name).
Error code (1 byte of 0).

APPLI-CLRD OEM MAEUAL /PAGE 11

N—"

“«4& COMMAND

MAP
(V)
hexYdecimal

COMHAED DESCRIPTIONH
00 Illegal does nothing
01 Read data from the Apple memory
02 Write data to the Apple memorTy
03 Execute a routine .
04 Warm boot
05 Connect a driver
06 Read 1 byte from the Apple memory
07 Write 1 byte to the Apple memory
08..0F Reserved
10..7F Unused
80..83 Block device 0
84..87 Block device 1
88..8B Block device 2
8C..8F Block device 3
90..93 Block device &
94..97 Block device 5
98..9B Block device 6
9C..9F Block device 7

g AO..A3 Block device 8
A4, .A7 Block device 9
AB8..AB Block device 10
AC. .AF Block device 11
BO..B3 Block device 12
B4..B7 Block device 13
B8..BB Block device 14
BC..BF . Block device 15
c0..C3 Character device O
C4..C7 Character device 1
C8..CB Character device 2
CC.i.CF Character device 3
D0..D3 Character device &

i 3y D4..D7 Character device 5

D8..DB Character device 6
pC..DF Character device 7
E0..ER3 Character device 8
E4..E7 Character device 9
E8..EB Character device 10
EC..EF Character device 11
FO0..F3 Character device 12
F4..F7 Character device 13
F8..FB Character device 14
FC..FF Character device 15

APPLI-CARD OEM MARUAL /PAGE 12

CHAPTER 3/ 1/0 BYTE

This section describes the use of the I/0 byte by the
BIOS. The 1/0 byte is located at address 0003h, and 18
changed either by the STAT program or directly by an
application program. It should be noted that although
the 1/0 byte only supports 5 different devices, the
command structure supports 16 devices. The extra
devices are available by directly calling the Apple I/0
processor.

The following shows the relationship between the
logical devices (CON:,RDR:,PUN:,LST:) and the physical
device names.

! LST: | PUK: ! RDR: ! COR: !

CONSOLE, CON: = bits 0 and 1.

0 = TTY: for input and output (character device 0)

1 = CRT: for input and output (character device 3)

2 = BAT: causes CRT: to be used for imput and
output. In addition, all output is echoed to
1LST:. This is equivalent to 2 permanent "CTIRL
P" L]

3 = UC1l: for input and output (character device 4)

READER, RDR: = bits 2 amnd 3.
0 = TTY: a8 ipput (character device 0)
1 = PTR: as input (character device 2)
2 = URl: a6 input (character device 1)
3 = DR2: as input (character device 4)

PURCH, PUR: = bits & and 5.
0 = TTY: &8 output (character device 0)
1 = PTP: as output (character device 2)
2 = UPl: as output (character device 1)
3 = UP2: as output {character device &)

PRIFTER, 1LST: = bdits 6 amnd 7.
0 = TTY: for input and output (character device 0)
1 = CRT: for input and output (character device 3)
2 = LPT: for input and output {character device 1)
3 = UL)l: for input and output {character device &)

APPLI-CLRD OEM MABUAL /PAGE 13

4.1 APPLE
HARDWARE
Ngr””

CHAPTER &/ HARDWARE

The followving chapter outlines the Apple and APPLI-CARD
bhardvare.

In the hex numbers that follow, the letter "N" (such as
OCONO) is defined as 8 plus the Apple slot number 1in
which the APPLI-CARD resides. For example, OCOCOH is
the input port of the AFPPLI-CARD when it is in slot 4.

I1/0 PORT DESCRIPTION
\

OCONO - 8 bit input port. This is the port the Z-
80 writes to send a byte of data to the
6502. '

OCON1 . 8 bit output port. This is the port the
Z-80 reads to get a byte of data from the
6502.

~0CON2 1 bit status port. Bit 7 of.this port is

set to 1 if output data port (OCON1) is
full; i.e., the previous data byte
written by the 6502 has not yet been read
by the Z-80.

OCON3 1 bit status port. Bit 7 of this port is
set to 1 if the input data port (OCOKND) is
full; i.e., there is data for the 6502 to
read from the 2-80.

0CON4& Not used.

OCONS ' Resets the Z2-80. This causes the Z-80 to
begin execution at location 0. A read or
write to this location resets the 2Z-80.

OCON6 Interrupt the Z-80. This is conmected to
channel 3 of the CTC on the APPLI-CARD.
If this chznnel is set up properly, 2 read
or write to this port will interrupt the
Z-80. Currently, the CTC is initialized
with interrupts disabled.

OCON? NMI interrupt £or the Z-80. This is
connected to the Z-80 NMI pin and causes
the 2-80 to take an interrupt and begin
execution at 66E. A read or write to this
location causes an NMI.

APPLI-CARD OEM MAHUAL /PAGE 14

APPLI-CARD
HARDWARE

Example of 6502 code to communicate with the Z-80:

RDBYTE:
LDX SLOTNUM sGET 280 SLOTNUMBER
WAIT1:
LDA 0C€083,X sGET IKPUT STATUS BIT
BPL WAITI sWAIT FOR DATA
LDA 0C080,X ;READ THE DATA
RTS
WRBYTE:
TAY sSAVE THE DATA
LDX SLOTNUM
WAIT2:
LDA 0C082,X
BMI WAIT2 ;WAIT FOR PREVIOUS DATA TO BE
s READ
TYIL T sGET BYTE
STA 0C081,X sWRITE TEE DATA
RTS

The APPLI-CARD contains the following features:

64X of memory.

4 MBZ or 6 MEZ Z-80.

2K ROM.

2-80 CTC.

Apple parallel port imterface circuit.

The following is a description of each of the I1/0 ports
in the APPLI-CARD.

1/0 PORT

0

20E

40E

' DESCRIPTIOR

8 bit Output port to 6502. Data written to
this port is buffered on the APPLI-CARD
for the 6502. The data available flag at
DCONR3 is set vhen this port is written by
the 2-80. :

8 bit input port from 6$502. The 5502 data
ont is buffered on the APPLI-CARD and is
resd into the 2-80 by an input to this
port. Data in this port is valid when the
2-80 data available at bit 7 of the input
port 40H is set.

2 bit status port. Bit 7 is the input port
data available flag and is a 1 when valid
dats is present. Bit 0 is the output port
data flag and is a 1 wvhen data has not yet

APPLI-CAED OEM MAWUAL /PAGE 15

I/0 PORT DESCRIPTIORN

60H 1 bit shadow memory control output port.
When a 0 is written to bit 0, the ROM is
turned off ‘and the lowver 32K RAM 18
active. Whenm a 1 is written to bit 0, the
ROM is turned on and the lower 32K of RAM
is inactive. The ROM is turnmed on at power
up, RESET, and RESET command via the APPLE
jnterface (OCONS5). Note that when the ROM
is enabled, it occupies memoTYy from 0
through O7FFFH. Therefore, code which
turns the ROM on/off must reside in the
upper 32K of memory (8000 through OFFFF).

80RH CTC CEANNEL 0 PORT
81H CTC CHANNEL 1 PORT
82H CTC CHANNEL 2 PORT
83H CIC CEANNEL 3 PORT

Rote: The control codes for the CIC are contained in
ZILOG and MOSTEK publications.

Examples of Z-80 code to communicate with the Apple:

RDBYTE:
IR 4O0R sGET STATUS BIT
RLC 3SHIFT STATUS BIT TO CARRY
JNC RDBYTE ;JUMP IF RO DATA
IN 208 sREAD TEE DATA
RET
WRBYTE:
IN 401 $GET STATUS BIT
RRC 3SHIFT STATUS BIT I0 CARRY
JC WRBYTE ;JUMP IF OLD DATA STILL TEERE
MOV A,C sGET DATA FROM C
0UT OR sWRITE THE DATA
RET
SHADOWSOUTSROM:
XRA A A = 0
OUT 60H $sTURR OFF ROM
RET
TURNSONSROM:
i KVI A,l sA = '}
OUT 60H s TURN ON ROM
RET

~ APPLI-CALD OEN HAEDUAL /PAGE 16

APPLI-CARD
FIRKWARE

After power up or a 2-80 reset (OCON5), the ROM on the
APPLI-CARD gains control. At such time, the Z2-80 writes
an ASCII Z (05AH) to the 6502 input port at 0CONO. The
first thing anm Apple program must do is read this datsa
from the OCORO port. After that, tbe followving four
commands may be used to control the APPLI-CARD.

Note: all 2 byte parameters are sent low byte followved
by high byte.

COHHAND DESCRIPTIOR

0 Function:

Return the ID string "Z80",ROM VER,
SERIAL NUMBER.

Parameters:
None.

Results:
"z80" (3 bytes -- SAH,38H,30H).
ROM VERSION (1 BYTE bimary value).
SERIAL NUMBER (4 BYTES binary value, low

byte first).

1 Function:
Read data from the AYPLI-CARD mezmory.
Parameters:
Starting address (2 bytes).
Number of bytes (2 bytes).
Results:
"Data returned (number of bytes).

2 Function:
Write data to the APPLI-CARD memory.
" Parameters:
Starting 2ddress (2 bytes).
Number of bytes (2 bytes).
Data bytes (number of bytes).

3 Function:

Call a program.
Parameters:

Starting address (2 bytes).
Results:

None.

Bote: In versiom 9.0 of the APPLI-CARD,
the following coumands have been added:

4 Function:

Write one byte to APPLI-CARD I/O port.
Parameters:

1/0 port address (1 byte).

Byte to output (1 byte).
Resulte:

APPLI-CARD OEX MAEUAL /PAGE 17

~—

COMMAND DESCEIPTIONR’

5 Function:
Read one byte from APPLI-CARD 1/0 port.
Parameters:
1/0 port address (1 byte).
Results:
Data byte read (1 byte).

While the firmvware is running (i.e. the shadow ROM is
on), the Z-80 will wait for approximately two minutes
for the first command or between subsequent conmands
from the Apple. If no command is received during that
time, the Z-80 will cease lookimng for commands and
start diagnostic testing. At this time, it will write
a binary 0 to the Apple data port (output port 0) and
increment this value approximately four times a second.
The continual incrementing of this value indicates the
diagnostics are rumning properly. The diagnostic
program may be interrupted and copmunications with the

Apple restored by resetting the APPLI-CARD (access t1
OCONS).

APPLI-CARD OEM MAEUAL /PAGE 18

INTRODUCTION

CHAPTIER S/ DEBUGGIEG DRIVERS

Debugging drivers with the APPLI-CARD is complicated by
the real time communication between the two coxmputers,
and the fact there is one only debugging console and
one communications port for the two machines.

As stated in the source code, never attempt to trace
through a routine which communicates with the Apple
from & 2-80 debugger. Since both the debugger and your
code will be trying to talk with the Apple at the same
time, the system will inveriably bang. The only way to
debug communication problenms is to do it from the Apple
side.

The first thing you must be able to do is set & break
point in a driver. To set a break point, you need to
get to the Apple monitor. 1f you bave an INTEGER BASIC
Apple, then all you have to do is press Treset. I1f you
do not have an INTEGER BASIC Apple, you will need to
patch the command processor program while the APPLI-
CARD is booting (sce RESET PATCH below). Any tize the
APPLI-CARD is waiting for a character to be typed, you
may press reset, write s character to OCOR1 (the 6502

output port), and them reenter the command processor &t
OBO3EBE.

The following exzmple assumes that the APPLI-CARD is in
slot 5. Be certain to change the I1/0 addresses if
APPLI-CARD is in a different slot.

A> ~ {PRESS APPLE RESET WEEK TEE PROMPT IS
DISPLAYED)

* {SET ANY BREAR POINTS}

*COD1:41 {SUPPLY AN "A" AS TEE CEARACTER TYPED)

*B038G {REENTER TEE COXMAKRD LODP}

A>A {WE ARE NOW BACK IKTO CP/¥ WITE THE TA™Y

1t is necessary to know where your code is loaded. The
drive code is loaded sequentially beginning at OBODH.
SFTVIDEO.DVR ends a2t 3600E, and BIRESIO.DVR ends &t

~7000E. Begin looking for your code after these points.

APPLI~-CARD OEM KABUAL /PAGE 19

—"

2.2 RESET
PATCH

If you do not have an INTEGER BASIC machine, you may
patch the Apple command processor loop at 0B22FH with
65H, and 0B230H with OFFH. To perform this patch , hit
reset after the screem has cleared and before the
LOADING DRIVERS message appears. Then patch the sbove
locations and continue the boot by executing at O0FBOOOE.

APPLI-CARD OEN MARUAL /PAGE 20

INTRODUCTION

USER
INTERFACE

CEAPTER 6/ ASSEMBLER

The 6502 Cross Assembler A65 was designed to translate
6502 assembly source files to a relocatable format. It
rups under CP/M on the APPLI-CARD and uses CP/M files.
The output of the assembler is linked withk other
modules to form an object file. It is not necessary tO
use this assembler snd linker, of course, but they are
provided if you wish to use them. The sanmple £files use
this assembler.

To execute the assembler, the following files nust be
present on the default drive: A65.COM, MAIN65.0VL,
DMPTABLE.OVL and OPCDE65.TXT,. Type A65 and follow
the prompts noted below:

A>L65

Input file name: B:CDEXYPL

Output file name: B:CDEXNPLO

List file name (cr or NONE: for nomne): BOHRE:

The input source file mame is a standard CP/M file
name. 1f an extent is not present, them .A65 is
assumed.

Examples of input file names:

SVAZVX4 {SVAZVX4.AH65 on default disk)
B:SVAZVX4 {SVAZVX4.A65 on drive B}
C:SVAZVX4.ABC {SVAZVX4.ABC on drive C}

The output file name is the file to wbich the
relocatable output is writtem. If a dollar sign ($) is
used in place of an output fi1le, then the name of the
output file is the same as the input file name, except
with an extent of .ERL. If pno extent is provided, then
.ERL is supplied.

Examples of output file names:
$ {Same file name as input but .ERL}

CDEXMPL {CDEXM¥PL.ERL on default drivel)
B:CDEX¥PL.O0UT {CDEXMPL.OUT on drive B}

The liet file name is the file to which the listing is

vwritten. 1If a dollar sign (S) is used in place of 2
list file, then the name of the list file is the sane
as the input file name, except with an extent of .PRN.
1f you do not want a listing file, then enter a return
or NONE:. Other legal names are LST: for the primteT,
and CON: for the console.

-

APPLI-CARD OEM KAEUAL /PAGE 21

6.3 SOURCE
SYNTAX

6.3.1 LABELS

6.3.2 OPCODE

6.3.3 OPERAND

Examples of listing file names:

$ {(Same file name as input but .PRN)
BDEXMPL {BDEXMPL.PRN on default drive}
G:BDEXMPL.LST {BDEXMPL.LST on drive G}

LST: {1isting to printer)}

CON: {listing to comnsole}

NONE: {No listing)} '

Source files consist of lines of ASCII characters

terminated with a carriage return and line feed. The
format of each lime is:

label opcode operand ;comment

where any or all of the fields are optional.

The label field is a string of characters which begin
in column 1, and start with an alphabetic character
(“@°, “A° to “Z° or dollar sigm “$7), followed by any
number of alphanumeric characters. Only the first 8
characters are cignificant. If the label begins with a
dollar sigm, it is & temporary label which is active
between two non-temporary labels.

The opcode field may be one of the M¥O0S Technology
6502 opcodes or a pseudo opcode.

The operand field is optiomnal or mandatory depending on
the opcode. Expressions in the operand field may be of
two types: either numerics or strings. Strimpg
expressions are multiple character strings imbedded
between two double quotes. Examples:

+BYTE “THIS IS A STRING"™
«BYTE "AB" : 3A SEORT STRING

Numeric expressions may consist of numbers, a single
character in double quotes, or & label with optionzl
operators and parenthesis. Operators of the sanme
precedence are evaluated left to right. The folloving
sare the operators in order of their precedence:

APPLI-CARD OEX ¥ARUAL /PAGE 22

.4 NUMERIC
CORSTANTS

PREC. OTERATOR EXPLATATION

1) O Parentheses
2) ~ Unary operators
+ positive
- negative (twos compliment)
NOT bit-wise ones compliment
3) Multiplicative operators
* signed multiplication
/ signed division
Z signed modulo (remainder)
Uw unsigned multiplication
u/ unsigned division
v unsigned modulo
4) Additive binary operators
+ add
- subtract
U+ unsigned add
V- unsigned subtract
AND bit-wise and
EOR bit-wise exclusive=-or
53 Comparisons
- egual
<> not egual
2> greater then
< less than
>= greater than or equal
<= less tham or equal
U= unsigned equal
V<> unsigned not equal
U> unsigned greater than
U< unsigned less than
U = unsigned greater thanm or
equal to
UxXm= unsigned less than or equal to

Kumeric constants in expressions may be one of four
radices: binary, octal, decimal or hexadecinmeal, with
the radix a5 a2 suffix to the constant. When no radix is
specified, the default radix, decimal, is used. The
following are examples of each type. :

256. sdecimal the default
100H shex 256.
1008 3binary 4.

- 100Q joctal 64.

APPLI-CARD OEM MKAFUAL /PAGE 23

~—r"

6.4 PSEUTO
OPERATION

Below is a list of pseudo ops for the assembler.
KNote: Braced items are optiomnal.

«.BLOCK expression g
Reserves expression number of bytes in the
program.

«BYTE expression{,expression}
Defines bytes and strings im a program.

.DEF name{,name}
Defines a list of labels as entry points
into this module. Each name in the list
must correspond to a label and not an

equate. There may be any number of .DEF
statements.

.DSECT

Tells the assembler to assemble all of the
generated code into the data segment.
Normally this segment is used for data
areas. At link timpe, the address of
.DSECT is set with the /D switch, or
defaulted to the asarea following each
module if mo /D is used.

+EQU expression

Defines a label with a specific
value. :

.1F expression

{.ELSE}

.ENDC
.IF, .ELSE, and .ENDC are used for
conditional assembly. If the expression
evaluates to something other than 0, then
the code following the .IF is assembled.
I1f the expression evaluates to 0, apd it
an .ELSE is present, ¢then the <code
assembled is the code between the .ELST

and the matching .ENDC. IF statements may
be nested.

+INCLUDE file name

Causes the source code from the specified
diskette file to be included in the mainm

source code (as if it were written
inline).

.LINES exptei;ion

Defines the number of lines per page.
Default is 66.

APPLI-CARD OEY MABUAL /PAGTE 24

+LIST .
Directs the assembled code to the listinpg
file.

+NOLIST
Discontinues output of the assembled code
to the listing file.

«NAME “"string" ‘
Defines the module name for the linker
(may be up to seven chsracters long).

.PAGE ({"string")
Advances to the top ot the pnext page and
allovs a subtitle as an option.

.PSECT

Tells the assembler to assecble the code
into the program segment. This is the
default if peither .DSECT or .PSECT is
invoked. Normally this is the segment used
for executable code. At 1link time the
address for .PSECT is set with the /P

svitch or defaulted to 100E if no /P is
used.

<-QUERY "“string"
Queries the operator for input after
displaying the string. This accepts the
operator’s input and assigns the value in
exactly the same manner as .EQU.

+REF name{,name} .
Specifies a2 list of labels which are
defined in enother module &8 .DEF's and
which are to be accessed by this module.
Note: currently no arithmetic is a2llowved
on .REF labels (the assembler does mnot
generste &D €rTOT).

.TITLE "string"
String is printed at the top o0f every
page. 3

WIDTH expression

Defines the width of the output. Default
is 79.

.WORD expression{,expression)}
Defines words in LOW byte HIGE byte order.

.5 BUGS 1IN
THE
ASSEMBLER

At the present time, the assembler has several bugs
vhich are described below. -

1) When a label defined in a .REF list is used in an
arithmetic expression, an error occurs. Currently, the
assembler does not flag this error and the linker does
not relocate it properly. If you need to do
calculations they must be done at runtime. Typically
this condition arises when a 2 byte variable needs to
be accessed. You must either definme 2 labels or use
indexed addressing to access the other byte such as:

.REF LOLBL1, HILBL1

"LDA LOLBLI ;GET LOW BYTE

LDY HILBLI ;GET HIGH BYTE

or

LDX #1

LDA LOLBL1,X :GET HIGH BYTE

TAY s TO Y

LDA LOLBL] sGET LOW BYTE TO A

2) Too many local labels cause the assembler to die.
This is the only known bug that causes the assex=bler to
stop while assembling code. If the assembler does stop
for no apparent reasom, try changing some of the local
labels to global labels. This happens only on large
files. . :

3) The assembler also dies while printing out a large
symbol table. This also occurs only on large files.
The user may ignore it, or break the file into smaller
modules.

4) The assembler generates an error when doing an
expression, such as:

CONST +.EQU 3
LDA LABEL+CONST+1
LABEL: NOP?P
solution:
CONKST1 .EQU 3+1

LDA LABEL+CONSTI1
LABEL:

USER
INTERFACE

CEAPTER ,7/ LIEKER

The linker is used to convert the output of the
assembler into an object file. The linker can slso be
used to combimne or link several separately assesbled
modules into a single file, and resolve the references
betwveen them. These references are defined by .DEF s
and .REF's in the assembly language source files.

To use the linker, you must have the two files,
LINKK.COM and LINK.OVL on the default drive. The linker
ie invoked by typimg A>LIKK. The input string for the
linker is defined as follows:

{output file=)inmput filel, input file2, ... input fileK
{switches)}

The output file is optional. If not present, the
output file will be the same as the firet input £file,
except with an extent of .COM. Only the farst input

file needs an extent. 1f pot present, the defsult
extent, .ERL, is used. Switches are used to cottrol
actions by the linker. Each of the switches is preceded
by 2 slash, (/), followed by a letter, and
(optionally), a parameterT.

LINKER OPTION SWITCEES

la /A cauvses the linker to abort operstion
wvithout any processing.

/cC ./C signals the linker that more input
files 2are found on the next limne. This is
used wvhen more input files are used tham
can fit on one line. The last line has no
fC.

/D:value /D sets beginning address of the data
segment, .DSECT. The value parameter is 2
bhexadecimal number. If /D is not used, the
default is the data follows the code of
eech module. There may only be one /D
switch.

/lE /E causes the linker to output symbols of

.REF’e end .DEP°8 vhich begin with an "€".
Bymbols which begin with a """ may be used
in eystem librery modules, and are noOt
normally uvueed in a program. This
eliminates some possibilities of multiply
defined symbols.

APPLI-CARD OEM MAHUAL /PAGE 27

/L /L causes the linker to output the program
and data arez locations for each module.

/M /M causes the linker to output the symbol
table of the .REF’s and .DEF’s.

/N /N causes the linker to refrain from
writing the data area to the output file.
Space on the disk is saved if the datsa
-ares does not contain any initialized
data.

lF /F causes the linker to assume that the
file pname preceding this switch is a file
vhich contains linker input commands.
This can be used instead of a submit file.
L.CMD is assumed if the fi1le does not have
an extent.

/P:value /P sets the address of the program segment
.PSECT. The value parameter is s
bexadecimal number. If /P is not used,
then the default is 100H., There may omnly
be one /P switch.

/s /S signals the linker to search the file
associated with this switch and uses it only if there
is 8 reference to it which is currently undefined. This
feature is used mainly with libraries and system
modules so unnecessary routines will not be loaded.

/x /X allows this linker to assemble a 68000
file. It should not be used.

Examples of using the lanker:

Link CDEXMPL.ERL at 100H. The output file will be
CDEXMPL.COM.

A>LIBEK CDEXMPL

Link BDEXMPL.ERL at 0. The the output file will be
BDEXMPLO.COX. -

A>LIDK BDEXMPLO=BDEZMPL/P:0
‘Link TEST.REL at 7000E with the data area to 800H, and
show the complete symbol table. The output file will

be TEST.OBJ on drive A:. Note that TEST.REL will be
on drive B:. : -

A>LIEE TEST.OBJ=B:TEST.REL,LIBRARY/P:7000/D:800/L/H/¥

APPLI-CARD OEM MAKHUAL /PAGE 28

BUGS 1IN
THE LINKER

ettt e .

Link TEST1 through 10.

A>LICK TEST1,TEST2,TEST3,TEST4/C
®*TEST5,TEST6/C
*TEST7 ,YEST8,TESTY,TESTIO

Link TEST! through 10 with a .CMD file. TEST.CHD looks
like this:

TEST1,TEST2,TEST3,TEST4,TESTS/C
TEST6,TEST?7,TEST8,TEST9,TEST10/P:5000
/D:100/L/M/E

A>LIEK TEST.CHD/T

The only known bug in the lainker is that the output
file tends to be one sector larger than necessary. This
can cause problems when concatenating files for a
DRIVER. The solution is to rely on the size of the
module defined in the atsembler and not by the size of
the file output by the linker.

APPLI-CARD OEM MAPUAL /PAGE 29

8.1 USER
INTERFACE

8.2 BUGS 1IN
THE GENMAP

CHAPTER 8/ GCEEMAP

This file generates a bit map by comparing two input
files and outputting the bitmap.

The user supplies two input files on the command line.
A single file name (using the name of the first file)
is created with an extent of .MAP. '
Example:

A>GEEBMAP FILE]l .COH FILEZ2.COK

The output will be FILE]l.MAP
As in the 1linker, GENMAP ¢tends to output
a file one sector too large. The actual number of valid

bytes is the length defined in the assembler divided by
8.

APPI.T—CADPND NPW WAwWWSY /Dpre 2n

CHAPTER 9/ OTHER FILES

The other files supplied on the OEM disks are explained

below.

BDEXMPL.A65

CDEXMPL.A65

APLPLPY.A6S

SVAZVX4.A65

DRVREQUS.A6S

RDWREST.ASK

BWHEXMPL.ASH

M¥*_SUB

This is anmn exaﬁple of a block device
driver and is to be used as 8 skeleton
block device driver.

This is an example of a character device
driver and is to be used an & skeleton
character device driver.

This is & block device driver which makes
RWTS located at BDOOE to interface wvith
the APPLI-CARD. This is an example of a
complete driver.

This is a2also an exanmple of 2 block device
driver and shows how wmultiple density
devices are supported.

This is an include file used by the above
routines., It imcludes system equates.

i

This is 8 file which can be uvsed by a Z-80

program to talk directly with the HOST
6502.

This is an example of a progran which uses
BRDWREST.ASM. This program searches for =&
driver of & particular name and then moves
the heed of the driver off the datas erea.

The files wvhich begin with ¥ and have and
extent of .SUB are submit £files w~hich
duild a driver.

APPLI-CARD OEM ﬁABULL /PAGE 31

S~

TECH SUPPORT NOTE
RE: Appli-card driver memory usage.
Note: These memory addresses are in the Apple’s memory.

The 6502 control program (CP6502) begins at BOOOH. This code is8

approximately 700H bytes 1long. The drivers which have been
instelled in the DRIVERS file are loaded sequentially, <following
CP6502. SFTVIDEO 1is always the first driver, and it is about

18BOH bytes long.

If nusing the HIRESIO driver, 1t will be loaded at ©6000H; this
code is 1000H long, &0 it ends at 700O0H. This driver uses the
Apple hires pages at 2000H and 4000H.

There are device tables begining at BEBOH, so0 this aree must not
be affected. :

Addresses S000H to AFFFH contain a copy of the CP/M image, which
is used on a reset (warm boot), rather than going to disk to get
the image on & warm boot.

= Note: Locations given in the OEM manual on pg. 19 for beginning
of drive code and SFTVIDEO location are in error.

APPLI-CARD BOOTSTRAP PROCESS

The bootstrap process for the APPLI-CARD on the Apple II, II+ and
Ile is initiated by a 256-byte bootstrap written in 6502 code
residing 'in the first sector of track O on. the boot disk. This
bootstrap is part of the file PCPICPM which is written to the
system tracks by the INSTALL utility program. The PCPICPM (file

is structured as follows:

0000 - OOFF Apple bootstrap (6502 code)

0100 - 1FFF CP/M (CCP, BDOS and BIOS - 280 code)
2000 - 27FF CP6502 (6502 I/0 control program)
2800 - ZFFF RWTS (6502 floppy disk I/0 code)

'The Apple bootstirap reads the remainder of the PCPICPM file,

containing CP/M, BIOS, CP6502 and RWTS, starting from sector 1 of
track O into contliguous memory locations in the Apple beginning
at address 9100 hexadecimzal. The bootstrap then transfers con-
trol to the initielization entry point of the CP6502 module at
BOOO hexadecimal. .

During the second phase of bootstrapping, the CP6502 initializa-

tion code creates the various tables it requires for laster opera-
tion, locates the Z80 APPLI-CARD I/O slot, passes the CP/M and
BIOS code up to the 280, and then enters its normal weiting loop,
Teady to respond to commands from the Z80.

The third phase of bootstrapping is handled by the 280 CP/M BIOS,
which is part of the code uploaded by the CP6502 module in +the
Apple. The BIOS cold start routines initialize the 280, I/0
ports &and interrupts, then cell CP6502 to load the DRIVERS file
into the 280 and connect individual drivers to specific devices
in the Apple. After device drivers are loaded and connected, the
BIOS displays the sign-on message, loads =and executes the
autostart file (if any), and transfers control to CP/H.

BOOEING FROM OTHER THAN APPLE FLOFPPY DISKS

Booting the APPLI-CARD CP/M system from disks other <than +the
default Apple 5.25" floppy disks requires that several sections
of executable code and default table information be examined and
possibly altered to be compétible with the new booistrap disk
type. The areas which must be examined are:

1. Boot disk parameter block data (paft of CP6502)
2. Default disk driver (part of CP6502)
3. Bootstrap loader (OOOH - OFFH in PCPICPM)

The Apple I/0 control program, CP6502, consists of three
components, 1) the main control program device driver
communication and initielizetion routines, 25 a default <disk
driver used during the remeinder of the bootstrap process,

and 3) a default console driver. In some cases, the new boot

disk will be software compatible with standard Apple floppies and
different only in density or total capacity. In these instances,
the bootstrap sector and default disk driver need not change, and
only the disk parameter tables in CP6502 must change. At
- CP6502+05FH are the following disk parameter tables:

HOST PARAMETER TABLE (Size) (Default value)
Bytes per sector word 256
CP/M records per track word . 32
CP/M records per host block byte 2
CP/M records per allocation block byte 8
Sector mask byte 1
~Sector shift count byte 1
DISK PARAMETER BLOCK ;
Sectors per track - : word k¥
Block shift factor byte 3
Block mask : byte 7
" Extent mask byte 0
Blocks on disk - 1 word - 127
Directory entries - 1 word 47
AllocO byte 192
Alloc1 byte 0]
Check masks word T2
Directory track offset byte 3

If the new boot disk is .not software compatible with Apple
floppies, both the bootstrap .and the default disk driver in
- CP6502 must be changed (which generally means replacement). Two

tables residing in the main CP6502 module contain pointers to the
four entry points of each of the default drivers. The block
driver table is located at CP6502+04AH and the character driver
table is immediately following at CP6502+052H. The four words of
the default disk driver table must be changed to point to the new
disk driver's INIT, READ, WRITE and OTHER entry points.

Generally +the default character driver is loaded at an address
lower than the disk driver, so that a new default disk driver may
be loaded directly over the existing driver. The new driver may
be larger than the originsl, provided it does not extend into
RWTS, located at CP6502+800H. If the new CP/M configuration will
never need to-use EWTS, that is, mnever use ANY Apple floppy
driver, then ‘the mew disk driver mey extend into the space reser-

ved for RWTS.

’”

APPLI-DISC RAM Extender
Usage Notes

The PCPI APPLI-CARD can have up to two Appli-Disc RAM
extender cards installed to provide up to 256K bDytes of RAM
memory in eaddition to the 64K bytes on the Appli-Card. The
edditional memory on each EAM extender is viewed &s either one or
two banks of 64K bytes each.

I. SOFTWARE ADDRESSING

RAM banks in an Appli-Card with RAM extender(s) installed
are numbered as follows: i

BANK #
. APPLI-CARD main 64K memory ,
lst 64K benk (RAM extender 1, bank 1)

OO
nnnnn

2nd ” " (= " 1, 2)
3rd ” ” (” ” 2. ” 1)
4th ” ” : (” ” 2' ” 2)

RAM Dbanks are selected by writing & dbyte with a ZB0 *OUT”.
instruction to port OCOE.

Bits: 7 6 &6 4 3 2 1 ©0
- BANK #
2. I 02000 X ¢
020 31 "X 2
(2 1 REE: WiERE o STy 4 4
e 3 1 X 6
1 280 X B

Data byte bits 1, 2, &end 3 select the RAM bank. Bits 7, 5,
4, &and O ere ignocred.

Bit 6 controls an 8 or 16K byte common aresa.

=] disables cormon RAM and enadbles the entire 64K in
the selected bank.

= 0 eneables 8 common bank ‘of either. 8X or 16K on the
APPLI-CARD, depending upon Jumper position,
disebling the corresponding addresses on the RAM
extender card. The 8K common &area resides =&t
addresses EOOO=E-FFFFH; the 16X dbank is &t COOOH-FFFFEH.

—, PR o)
.._/ 74"6/ 794" Py r/‘,(A LX) P o { P id<

/L(f/&w(‘ f../f . // /’;’P.' 7./_-. 7’/;‘-.—‘ /—-/ (f .7/4;1 S o
/s
4 / Crnpnlies Crosrmwoan 4»(,;"/_

e e r—————— A T———

II. HARDWARE JUMPERS

~—7 RAM extender boards contain several plug—jumper 1locations

o which are used to assign bank addresses and common bank

i configuration for each board. Near the upper left corner of
each RAM extender board the following jumpers and labels can
be found: ["0” indicates & pin, "---" isg a jumper]

R 16K 8K
coMM. o 0o-=-=0
S1IZE

The Jjumper choice for 8K or 16K common area size is
normally on the 8K side. The common area is that area
of memory retained from the Appli-card’s bank of 64K
to each 64K bank 0f extended memory. The common aresa
is the high 8K (orl6K) address locations, which will
contain an image of the CP/M operating system.

18T &ND
BD. 0-=--0 o BD.

0===0 0

0===0 o

The 3 jumper plugs should be installed as shown above
(covering 1left & middle pins) for the first extender
- board. If a second extender board is present, the 3

~ : Jumper plugs for the second board should be instelled
in the right-hend position (covering right & middle
pins).

TECH SUPPORT NOTE

RE: APPLI-CARD IOBYTE alteration notes
DATE: Summer ’84, P.B.

The Appli-card’s IO0OBYTE default setting can be reconfigured in
version 1.5 and later. Also, the prototype arrays for defining
the corresponding character devices for each physical device
setting can be altered in all versions.

At times it is desired to put a printer interface caerd in a slot
not currently supported by CP/M for Printer output. The deteails
here will aid in modifying the APPLI-CARD CP/M so that the LST:
will support printer output to an interface cerd in & slot other
than those supported (slots 1 and 4)-.

The 4 assignments the LST: (printer) can have are TTY:, CRT:,
LPT:, &and ULl:. Respectively, these have character device values
of 0,3,1,4 (which correspond to slot numbers in the Apple).

The IOBYTE default is for the LST: +to0 = LPT: , therefore the
Printer interface card would normally be in slot 1. You could,
for 1instence, put & printer card in slot 4 and use the STAT
command to reassign the LST: device (i.e. STAT LST:=ULl:). -

Eince slots 2, B, or 7 aren’t essigned to one of the device
names, it would be necessary to patch PCPICPM to enable use of &
printer card in one 0f these slots.

The APPLI-CARD ' IOBYTE default setting can be reconfigured in
vergion 1.5 and later. Also, the prototype arrays, which define
the <char. device (slot #) for each Physical device, can be
altered in all versioms.

First load PCPICPM into memory using DDT : A>DDT PCPICPM
The memory addresses given below assume PCPICPM is loaded &t
address 100H, which is where DDT loads it.

»=» VERSION 1.0 ===
The IOBYTE default (at location 1866H) cannot be changed in this
version, and will be initialized at 95H.

The prototype =arrays (each being 4 bytes long) are 1located as
follows:

CON: 1D63 thru 1D66
LST: 1D71 thru 1D74
RDR:,PUN: 1D7F thru 1D82

=** VERSION 1.5, 1.5A, 1.5, 1.6A ===

The IOBYTE default is located at 184D, &and is set to 9O5H.

The 4 byte prototype errays follow consecutively in this order:
CON: 184E thru 1851
LST: 1852 thru 1855
RDR:, PUN: 1856 thru 1859

==x YERSION 2.0 ===

The IOBYTE default is located at 185F, and is set to 95H.

The 4 byte prototype arrays follow consecutively in this order:
c

N: 1861 thru 1864
LST: 1865 thru 1868
RDR: ,PUN: 1869 thru 186¢

=== Format of the IOBYTE ***

The IOBYTE 1itself shows the relationship between the logical
devices (CON:,RDR:,PUN:,LST:) and the physical device names. This
byte (8 bits) is broken down as follows:

bits / 7 6/ 86 4/3 2/1 0

/ LST: / PUN: / RDR: / CON:

CON: = bits O and 1

(o} = TTY: (char. device 0)

1 = CRT: (" it 3)

2 = BAT: (" i 3,and output to LST:)

3 = UCl: (" g 1l or 2 depending on version)

RDR: = bits 2 and 3

0 = TTY: (cher. device 0)
1 = PTR: (" o 2)
2 = TaR1l: (" ke 1)
3 = TUBR2: (" i 4)
PUN: = bits 4 and §
0O = TTY: (char. device 0)
l = PpT2: (" 2) oty
2 = UPl: (- = 1) s
3 = UP2: (™ e 4)
. LST: = bits 6 and 7
0 = TTY: (char. device 0)
1 = CRT: (' ” s 3)
2 = PP (. .7 it 1)
3 = TULl: (" ” 4)

The middle 4 bits (bits 2-5) in a prototype byte are the ones
which establish whet the Character Device Number will be.
Bits O and 1 have values o0f 0. Bits 6 and 7 have values of 1.

For example: the prototype dbyte for LPT: is set for char. device
#1. This byte would look 1ike this: 11000100
which sgquals & hex value of C4.

To change LPT: to be set to char. device # 7. The byte would look
likXxe this: 11 011100 which equals & hex value of DC.

et P e i At e

/

For your information, &ll values would bde:

Bits Hex Char dev #
11000000 co (o]
11000100 c4 1l
11001000 cs8 3
11001100 cC 3
11010000 DO 4
11010100 D4 B
11011000 D8 6
11011100 DC 7

Using DDT, patch in this new hex value at the correct 1location
a8 noted above by version number.

Once you have patched PCPICPM, then you must run the INSTALL
program s0 that this is rewritten on the boot tracks.

